ポイント
-
15モード光ファイバ初の増幅中継により、大容量(毎秒273.6テラビット)かつ1,000 km超の伝送に成功
-
モード乗換えを行う増幅中継により、モード多重光信号の経路間の時間差を抑制
-
中継伝送技術の確立により、Beyond 5G後の大容量かつ長距離の光伝送システムの開発を加速
国立研究開発法人情報通信研究機構(NICT、理事長: 徳田 英幸)フォトニックネットワーク研究室を中心とした国際共同研究グループは、15モード光ファイバで初の増幅中継による、毎秒273.6テラビット、1,000 km超の伝送実験に成功しました。これにより、陸上通信インフラにおける活用の道が大きく広がりました。
マルチモード光ファイバ伝送は波長多重技術との組合せにより大容量を実現できますが、長距離の伝送は困難でした。本研究でNICTは、C帯(商用の波長帯域)全域に対応する15並列の増幅中継システムを含む周回伝送実験系を構築し、さらに、増幅中継の際に光信号ごとにモードの乗換えを行う方式を15モード用に発展させることにより、伝送後の各光信号の経路間の時間差を抑制し、1,001 kmの伝送距離を実現しました。また、本実験の増幅中継伝送システムは、より長距離に適した結合型マルチコア光ファイバにも適用可能であり、今後も更なる大容量化・長距離化の実現が期待されます。
本実験結果の論文は、第46回光ファイバ通信国際会議(OFC 2023)にて非常に高い評価を得て、最優秀ホットトピック論文(Postdeadline Paper)として採択され、現地時間2023年3月9日(木)に発表しました。
背景
増大し続ける通信量に対応するため、長距離光通信システムの大容量化に適したマルチコアや、将来的に更に大きな容量を達成し得るマルチモード光ファイバの研究が進められています。NICTは、15~55モード光ファイバを用いた大容量伝送や、実環境のテストベッドを用いた48.8 kmの15モード光ファイバ伝送を実証しています(表1参照)。これらは1区間の伝送でしたが、より区間の長い陸上通信インフラで光ファイバを利用するためには、伝搬中の信号減衰を途中で補償するための増幅中継が必要です。
現状では、モード数の多い多重信号は、多重状態のまま増幅して中継することはできず、まず、モードごとの信号の分離と従来型の光増幅器による並列増幅を行った後に、再度、モード多重をして中継する増幅中継伝送システムが必要です。加えて、大容量伝送のためには、広い波長帯域の利用と、波長チャネルごとの信号強度調整も必要となります。そして、増幅中継を行った場合でも、マルチモード光ファイバは、モードごとの光信号の伝搬時間が異なり、距離やモード数に応じてその差が蓄積するため、長距離の伝送は困難でした。
結果として、これまでに報告されたモード多重増幅中継伝送のモード数は、他研究機関による10モード(伝送距離1,300 km)が最大で、周波数帯域は約0.14テラヘルツまでであり、伝送容量は毎秒4.13テラビットでした。
今回の成果
NICTは、15モード増幅中継伝送システムと送受信システムを構築し、国際共同研究グループの製作した15モード光ファイバとモード合波器/分波器を利用して、合計毎秒273.6テラビット光信号の1,001 km伝送に成功しました。15モード増幅中継伝送システム(図1参照)は、モード合波器/分波器と、従来型の光増幅器、波長チャネル制御装置、周回制御スイッチを用いた15個の周回伝送系から成ります(詳細は補足資料 図5参照)。
伝送ファイバで生じるモードごとの伝搬時間差の蓄積を抑制するため、モード多重伝送技術で研究されている方式の一つである拡張巡回モード群置換技術を15モード用に発展させ、中継点ごとにモードの乗換えを行いました。遅延の少ないモードを経由してきた信号と多いモードを経由してきた信号を中継点で載せ替えることにより、受信端に到達したときのタイミングのずれ(図2の各シンボル)を従来伝送方式の場合(図2の破線)に比べて抑えました。
今回の実験ではC波長帯における184波長の偏波多重16QAM信号を15モード多重し、1区間当たり58.9 kmの15モード光ファイバを17回周回させた後に、高速な並列信号受信によって全モードの信号を一括で受信し、MIMOデジタル信号処理によってモード間の信号干渉除去に成功しました。総伝送距離は、おおよそ東京-札幌間に相当する1,001 kmとなり、過去の15モード多重伝送と比較すると、伝送距離が20倍以上、伝送容量・距離積が10倍以上となりました(表1参照)。
今回開発した増幅中継伝送システムは、より長距離に適した結合型マルチコア光ファイバにも利用可能であり、また、並列数を増やしてコア数やモード数を拡大することや波長帯域を拡張することによって、一層の大容量化が期待できます。
Beyond 5G以降の社会では、あらゆる人があらゆる場所で活躍できるように、大容量の通信インフラに支えられたサイバーフィジカルシステムを実現していくことが望まれます。本研究の増幅中継技術や、同時期に開発した結合型19コア光ファイバ等により、将来の大容量・長距離光通信インフラの実現へ向けた技術開発が大きく進展しました。
今後の展望
増幅中継システムの並列数をより増やし、コア数の大きい結合型マルチコア光ファイバやモード数の大きいマルチモード光ファイバでの中継伝送を可能としていきます。また、マルチモード伝送実証にとどまらず、結合型光ファイバによる長距離化や、波長帯域の拡張による大容量化を実証し、実用化の可能性を探求していきます。
なお、本実験の結果の論文は、光ファイバ通信関係最大の国際会議の一つである第46回光ファイバ通信国際会議(OFC 2023、3月5日(日)~3月9日(木))で非常に高い評価を得て、最優秀ホットトピック論文(Postdeadline Paper)として採択され、現地時間3月9日(木)に発表しました。
採択論文
国際会議: OFC 2023 最優秀ホットトピック論文(Postdeadline Paper)
論文名: 273.6 Tb/s Transmission Over 1001 km of 15-Mode Fiber Using 16-QAM C-Band Signals
著者名: Menno van den Hout, Giammarco Di Sciullo, Georg Rademacher, Ruben S. Luís, Benjamin J. Puttnam, Nicolas K. Fontaine, Roland Ryf, Haoshuo Chen, Mikael Mazur, David T. Neilson, Pierre Sillard, Frank Achten, Jun Sakaguchi, Cristian Antonelli, Chigo Okonkwo, Hideaki Furukawa
関連する過去のNICTの報道発表
- 2023年3月15日 「世界初の標準外径19コア光ファイバを開発し、伝送容量の世界記録を更新」
https://www.nict.go.jp/press/2023/03/15-1.html - 2022年10月3日 「世界初、標準外径光ファイバで55モード多重、毎秒1.53ペタビットの伝送成功」
https://www.nict.go.jp/press/2022/10/03-1.html - 2022年9月22日 「世界初、実環境テストベッドにおいて15モード多重信号の光スイッチング実験に成功」
https://www.nict.go.jp/press/2022/09/22-1.html - 2020年12月17日 「世界初、マルチモード光ファイバで毎秒1ペタビット伝送成功」
https://www.nict.go.jp/press/2020/12/17-1.html