JUNO2: US-Japan Collaborative Project STEAM: Secure and Trustworthy Framework for Integrated Energy and Mobility in Smart Connected Communities

PI Meeting – Chicago, October 11, 2019

Our US-Japan Team

Sajal K. Das

Hayato Yamana

Shameek Bhattacharjee

Hirozumi Yamaguchi

Abhishek Dubey

Keiichi Yasumoto

Security in a Smart City Scenario

Smart Mobility and Smart Energy:

- Interdependent, societally critical CPS networks
- Ensuring safety, resiliency and privacy preservation

Unique Challenges in Securing S & CC

- Large variations in individual end point data due to behavioral and activity differences.
- No strict stationarity over time or space.
- Heterogeneous time granularities of sensing and network sizes.

Goals and Novelty of STEAM Project:

- Develop integrated frameworks, algorithms and models to address security, dependability and trustworthiness challenges in mobility and energy under various threats.
- Design lightweight resilient anomaly detection and privacy preserving encryption schemes & middleware architecture.
- Trust building in S & CC applications; efficient mechanisms to handle conflicting goals of identifying anomalies; trade-off between security, privacy and integrity at scale.
- Efficient co-design and calibration of encryption and robust anomaly detection schemes.

STEAM Project: Year 1 Progress Report

Thrust 1: Secure and Trustworthy Decision Making under Uncertainty

- Fast, hierarchical, efficient, and accurate decentralized anomaly detection methodology for streaming transportation sensors using Pythagorean means and long short-term memory (LSTM) networks
- Fast and accurate detection of compromised smart meters under temporally distributed stealthy attacks for smart energy networks
- Algorithms for detecting components with attack margins much below the standard deviation of data with high accuracy.

Thrust 4: Developing a Secure and Trustworthy Middleware Architecture

- A novel middleware architecture to assign tasks over IoT devices (e.g., RSUs, smart meters) taking into account the required quality of service (QoS) levels
- Implementation and evaluation of a prototype middleware using Docker technology for easy deployment
- Development of a Smart Transportation Service Emulation Testbed
- Defining an optimal task assignment problem and developing an algorithm with federated learning

Thrust 2: Privacy Preserving Computations using Fully Homomorphic Encryption (FHE)

- Developed efficient approaches for enhancing FHE to execute privacy preserving decisions that require complex calculations.
- **Approach 1:** Table lookup with a non-colluding server to adopt any kinds of calculations at aggregators for higher speed-up
- Approach 2: Approximate Homomorphic Encryption scheme (HEAAN) to leverage floating-point arithmetic (e.g., log computation) over encrypted data

Thrust 5: Validation With Real Datasets for Smart Mobility and Energy

- Large scale road traffic data collection from Osaka and Nashville
- An integrated energy simulation testbed development for experimenting with integrated mobility and energy scenarios

Progress on Thrust 1:

(Shameek <u>Bhattacharjee</u>, Sajal <u>Das</u>, Abhishek Dubey)

Secure and Trustworthy Decision Making under Uncertainty

Tasks:

1.1 Lightweight Anomaly Detection1.2 Stochastic Trust Models1.3 Dependable Decision Making

5

Trustworthy and Efficient Anomaly Detection

Threat Model: Orchestrated attacks on a collection of sensors to maximize the effect of attack on the global transportation system

Tried on real data from Nashville, TN

Optimal RSU Placement: designed for optimal anomaly detection using ROC curves

Macro Model: designed for large scale decentralized anomaly detection in real time

Micro Model: highly accurate and fine grained-anomaly detection. Computationally intensive

Congestion Progression: how the effects of anomalies propagate through the network

Optimized (for detection) RSU Deployment

Data Collection		Zone Level Detection	Sensor Level Detection	Network Level State Estimation
Speed data sent from sensor to its corresponding RSU.		Light-weight anomaly detection run at the RSU level. Statistical means approach. Purpose: identify orchestrated data- integrity attacks.	LSTM based detection run at the centrally located cloud on high- capacity detection nodes. Identify which sensors are compromised by data-integrity attack. Only runs when attack is identified at the area layof	If a real-incident is detected then then congestion propagation framework is used to identify the future affects in short-term. Then the state of the transportation network can be used for optimal routing. LSTM Networks are
			the zone level.	used to mitigate the anomalous information if no physical incident was identified
)))))))))))))))))))		Predicted Speed values	by LSTM vs Actual Spec	ed Values

200

Timestens

400

300

Micro-Level Detection: Efficient long short-term memory (LSTM) based traffic predictor by modeling each road segment in large scale traffic network as a function of neighboring roads.

100

Attack Context Embedded Trust Scoring Models

Challenge: *Fast* and *accurate* detection of <u>Compromised Smart Meters</u> under temporally distributed stealthy data falsification attacks.

- Introduction of Attack Responses as Robust Statistical Measures
 - Pythagorean Means and Real Analysis
 - Median Absolute Deviation
 - Location Parameter Correction
 - Attack Probability Time Ratio
- Embedding of Responses → magnify divergence in probability space for information theoretic detection
- Magnified Divergence → high detection accuracy, reduced false alarms, decreased convergence time under stealthy attacks
- Multi-granular anomaly based attack detector → across temporal scales → better unsupervised threshold design

Products:(1) ACM Trans. on Privacy and Security, minor revision, Oct 2019Broader Impacts:(2) IEEE Trans. on Dependable and Secure Computing, to appear

- Includes closed form approximations and performance limits of robust statistics under various attacks
- Validated across big datasets from Texas (800 meters) and Ireland (5000 meters)

Diversity Index Trust Scoring

Problem and Challenges: Detect Components with attack margins much below the standard deviation of data and minimal shape parameter change with high accuracy

- Introduced a new approach towards information theoretic trust scores using
 - Modified Hill's Diversity Index
 - Weighted Version of Renyi Entropy
- Captured horizontal, vertical, and incline shifts in statistical distributions
- Introduced the notion of Expected Temporal Self Similarity
- Optimized Model Parameters
- Higher Scores means more dishonest

Robust Decision Making under Attacks and Uncertainty

Progress on Thrust 2:

(Shameek Bhattacharjee, Sajal Das, Hayato Yamana)

Privacy-preserving Computations using Fully Homomorphic Encryption (FHE)

Tasks:

2.1 FHE Calculations with Table Search2.2 Handling Range Search2.3 Applying FHE to Secure Decisions

10

Preserving Privacy

Motivation

- Ensure secure and trustworthy decisions across integrated domains of smart energy and smart mobility networks
- Preserve privacy of each data output by IoT

Objectives

- Enhance Fully Homomorphic Encryption (FHE) to execute privacy preserving decisions that require complex calculations -TWO TECHNICAL APPROACHES
- Speed-up the FHE execution to satisfy the required performance

Preserving Privacy – Approach 1

 Table lookup with a non-colluding server to adopt any kinds of calculations at aggregators and to speed-up.

• Any kinds of calculations can be adopted

 Integer-based encoding for further speedup in comparison with state-of-the-art research [Crawford et al. 2018] adopting bitwise-based encoding.

R. Li, Y. Ishimaki and H. Yamana, "Fully Homomorphic Encryption with Table Lookup for Privacy-Preserving Smart Grid," *3rd IEEE International Workshop on Big Data and IoT Security in Smart Computing* (BITS), June 2019.

35 working Raspberry Pi's to emulate power meters

Execution time of one table lookup (Intel Core i7-8700 @3.2 GHz)

Preserving Privacy – Approach 2

• Adopted Approximate Homomorphic Encryption scheme (HEAAN) to leverage floating-point arithmetic (log computation) over encrypted data

Novelty

- Anomaly detection algorithm over encrypted data w/o using non-colluding servers (more secure than Approach 1)
- Pre-computations of logarithm and its inverse at each household
- Optimized for FHE-friendly anomaly detection
- Homomorphic evaluation up to daily statistics
 that hide individual power consumption

Utility Company (Data Analyst)

Preserving Privacy: Results and Conclusions

Findings

- Almost same accuracy over both encrypted and unencrypted methods (possible to mitigate small accuracy error via post-processing)
- Server-side computation is feasible:
 3.303 s/hour (each hourly time-slot)

Next Challenges

- Enhance table lookup method to adopt multiple values, and propose less-than comparison for input values to handle wide range of inputs
- Balance Privacy-Performance trade-off with quantification (e.g., FHE with Differential Privacy)

Progress on Thrust 4: (Abhishek <u>Dubey</u>, Keiichi <u>Yasumoto</u>)

Developing Secure and Trustworthy Middleware Architecture

Tasks:

4.1 Distributed Aggregation4.2 Secure Anonymization4.3 Decision Making under Trade-offs

Middleware for Smart and Connected Communities

Challenges

- How to build multi-domain architecture for smart mobility and smart energy?
- How and where to implement computations related to privacy, security, and trust?
- What are computational/resource challenges for scalability?

Goal

Propose a novel middleware framework that distributes security features across multiple tasks and incorporates privacy, trustworthiness, resource constraints, and distributed decision support.

We have designed and developed IFoT middleware [SEC2018]

In-situ Distributed Computation and Aggregation

Innovation:

- 1. Designed a middleware architecture to assign tasks over IoT devices (e.g., RSUs, smart meters) taking into account required QoS level
- 2. Implemented/ evaluated a prototype middleware
- Used Docker technology for easy deployment
- Implemented a smart workspace use case (occupancy level of multiple rooms is queried)
- 3. Developed Smart Transportation Service Emulation Testbed

Findings:

- Smart and Connected Community services can be realized by distributed execution of tasks assigned over IoT devices
- Query response time can be reduced by distributing tasks over IoT devices

J. P. Talusan, K. Yasumoto, et al., "Evaluating Performance of In-Situ Distributed Processing on IoT Devices by Developing a Workspace Context Recognition Service," *IEEE PerCom Workshops*, 2019.

Smart Transportation Middleware

Processing time of a query (travel time b/w points) for different network configurations are tested

Processing time

 $80 \text{ km}^2 \text{ map of Nashville, TN is divided into } 8 \times 8 \text{ grids,}$ where each grid deploys an RSU which receives/stores traffic data (vehicle speed data) within the grid.

J. P. Talusan, K. Yasumoto, A. Dubey, S. Bhattacharjee, et al: Smart Transportation Delay and Resiliency Testbed based on Information Flow of Things Middleware. *IEEE BITS* 2019.

Ongoing work

- Develop federated learning on RSUs
- Optimal task assignment problem and algorithm with federated learning
- Develop and test anomaly detection algorithm (Target: submit to IoTDI 2020)

Progress on Thrust 5:

(Abhishek Dubay, Hirozumi Yamaguchi)

Validation with Real Datasets

Tasks:

5.1 Smart Transportation Application 5.2 Smart Energy Application

Validation with Real Datasets

Objective: Validate the proposed models and approaches using smart mobility and smart energy distribution / consumption scenarios with real-world datasets
 Approach:

- Generate large-scale mobility data from real datasets in Osaka
- Design a transactive energy testbed that can integrate energy market data

Real World Data Sets

Road Traffic Census data (obtained by nation-wide survey by Ministry Road Bureau) : contains traffic volume & velocity and OD of a particular day VICS (obtained via IR beacons) : contains queue length of major city roads and highways for 3months (Osaka prefecture whole region)

Infrared beacons (Ordinary trunk roads)

Infrared beacons are installed on the ordinary trunk roads and provide information covering about 30 km in the forward direction and about 1 km in the rear direction.

- Traffic congestion and travel time information.

- Information on restrictions due to accidents, construction, disasters, and weather conditions.

- Parking availability.

Osaka City Vehicle Mobility Generation

Procedure

- Arrange map (Open Street Map)
- Set ODs (Census Survey Data)
- Calculate route for each OD (by Traffic Simulator)
- Determine OD volumes (Census Survey Data)
- Adjust link-level traffic volume (vics)

The generated mobility data includes

- 10K 60K vehicles in Osaka city region
- 90 days (will include data of the day of "big rain disaster" in July 2018)

Next Challenges:

- RSU placement design in 5G realistic situations
- Evaluation of the impact of anomaly data on decision making using Osaka and Nashville data

Simulator Video

File Edit View Lists Base Data Traffic Signal Control Simulation Presentation Test Scripts Help						
Network Objects • X Network Editor						
Scont Martin						
Statistics 20 Models						
Ramps & Stairs						
Netw., Levels Backg 3D inf.						
Quick View Shart Map Start Map Start Map -413.232540 126.0 57017 + 0 0(0)						

Transactive Energy Testbed

STEAM Project: Broader Impacts

 Interdisciplinary Education and Experiential Learning for Students: Praveen Madhavarapu; Prithwiraj Roy (Missouri S&T and Western Michigan Univ., USA) Michael Wilbur; Geoff Pettet (Vanderbilt Univ., USA) Yu Ishimaki; Ruixiao Li (Waseda Univ., Japan) Jose Paolo Talusan; Francis Tiausas (NAIST, Japan) S. Choochotkaew; Yuki Akura (Osaka Univ. Japan) 	 Student Visit Exchanges: Y. Ishimaki (Waseda) visited MST in Aug-Sep 2018 for one month, and WMU for 2 weeks in June and Oct 2019 P. Madhavarapu and P. Roy (Missouri S&T) respectively visited WMU for 4 weeks in July 2019 and Aug 2019 J.P. Talusan (NAIST) visited Vanderbilt for 3 weeks in June 2019. M. Wilbur (Vanderbilt) visited WMU for 1 week. 	
 Integration of Research into Courses: Dubey (Vanderbilt Univ.) integrated anomaly detection module in his course on <i>Reliable Distributed Systems</i>, fall 2019. Shameek (WMU) incorporated CPS security challenges and smart grid security solutions in his course <i>Science of Cybersecurity</i>, spring 2019. 	 Outreach (Workshop Organization): Big Data and IoT Security (BITS), in conjunction with IEEE SmartComp 2019, Washington, DC, June 2019. Science of Smart City Operations and Platforms Engineering (SCOPE), during CPS-IoT Week, Montreal, Canada, April 2019. 	

Coordination and Collaboration

- Weekly Skype meeting; Very coherent group
- Joint publications by PIs and their students
- Co-organization of BITS and SCOPE workshops in 2019
- Planned Vision Paper: Security in Integrated Energy and Mobility
- Planned Special Issue Editing: Magazine and/or Journal

All Hands Meeting:

- <u>Missouri S&T</u>: Sept 14-15, 2018
- <u>Tokyo</u>: Oct 26-27, 2018 (JUNO2 Kick-off)
- Kyoto: March 11-14, 2019 (IEEE PerCom)
- <u>Washington, DC</u>: June 12-14, 2019 (IEEE SmartComp)
- Chicago: Oct 11, 2019 (JUNO2 PI Meeting)
- Bologna: June 20-23, 2020 (IEEE SmartComp)
- Nara: January 5-8, 2021 (ACM ICDCN)

September 14-15, 2018 meeting (Missouri S&T)

26

Collaborative Publications

- 1. <u>S. Roy</u>, N. Ghosh, and <u>S. K. Das</u>, "bioSmartSense: A Bio-inspired Data Collection Framework for Energy-efficient, QoI-aware Smart City Applications," *17th Annual IEEE International Conference on Pervasive Computing and Communications* (PerCom), Kyoto, Mar 2019.
- 2. Y. Nishimura, A. Fujita, A. Hiromori, H. <u>Yamaguchi</u>, T. Higashino, A. Suwa, H. Urayama, S. Takeshima and M. Takai, "A Study on Behavior of Autonomous Vehicles Cooperating with Manually-Driven Vehicles," *17th Annual IEEE PerCom*, pp. 212-219, Kyoto, Mar 2019.
- 3. <u>J. P. Talusan</u>, <u>K. Yasumoto</u>, et al, "Evaluating Performance of In-Situ Distributed Processing on IoT Devices by Developing a Workspace Context Recognition Service," *IEEE PerCom Workshop*, Kyoto, Mar 2019.
- 4. H. <u>Yamaguchi</u>, "Toward Urban Vehicle Mobility Modeling in Japan," *4th International Science of Smart City Operations and Platforms Engineering Workshop* (SCOPE), pp. 1-6, Apr 2019.
- 5. <u>R. Li, Y. Ishimaki</u> and <u>H. Yamana</u>, "Fully Homomorphic Encryption with Table Lookup for Privacy-Preserving Smart Grid," *IEEE BITS2019 Workshop*, pp. 19-24, June 2019.
- M. Wilbur, A. Dubey, B. Leão and S. Bhattacharjee, "A Decentralized Approach for Real Time Anomaly Detection in Transportation Networks," 4th IEEE International Conference on Smart Computing (SMARTCOMP), Washington, DC, pp. 274-282, June 2019.
- 7. J. P. Talusan, K. Yasumoto, A. Dubey, and S. Bhattacharjee, "Smart Transportation Delay and Resiliency Testbed based on Information Flow of Things Middleware," *IEEE BITS Workshop*, June 2019.
- 8. <u>Y. Ishimaki</u>, <u>H. Yamana</u>, "Non-Interactive and Fully Output Expressive Private Comparison," *INDOCRYPT*: 355-374, 2018.
- 9. <u>S. Bhattacharjee</u> and <u>S. K. Das</u>, "Detection and Forensics against Stealthy Data Falsification in Smart Metering Infrastructure," *IEEE Transactions on Dependable and Secure Computing*, to appear, 2019.
- 10. R. P. Barnwal, N. Ghosh, S. K. Ghosh, and <u>S. K. Das</u>, "Publish or Drop Traffic Event Alerts? Quality-aware Decision Making in Participatory Sensing-based Vehicular CPS," *ACM Transactions on Cyber-Physical Systems*, to appear, 2019.
- 11. <u>S. Bhattacharjee</u>, N. Ghosh, V. K. Shah, <u>S. K. Das</u>, "QnQ: A Quality and Quantity Unified Approach for Secure and Trustworthy Crowdsensing, *IEEE Transactions on Mobile Computing*, to appear, 2019.
- 12. A. Sturaro, S. Silvestri, M. Conti, and <u>S. K. Das</u>, "A Realistic Model for Failure Propagation in Interdependent Cyber-Physical Systems," *IEEE Transactions on Network Science and Engineering*, to appear, 2019.
- <u>S. Bhattacharjee</u>, <u>V. P. Madhavarapu</u>, S. Silvestri, and <u>S. K. Das</u>, "Attach Context Embedded Data Driven Trust Diagnostics in Smart Metering Infrastructure," *ACM Transactions on Privacy and Security*, under minor revision, Oct 2019.

JUNO2: US-Japan Collaborative Project STEAM: Secure and Trustworthy Framework for Integrated Energy and Mobility in Smart Connected Communities PI Meeting – Chicago, October 11, 2019

