

FARMTAB: Precision Agriculture System using Internet of Things and Artificial Intelligence for Urban Farming

FARMTAB: Precision Agriculture System using Internet of Things and Artificial Intelligence for Urban Farming

Introduction:

The objective of FarmTab is to boost the productivity of urban farming by automating the farming process by embedment of Internet of Things (IoT) and Artificial Intelligence (AI) technologies into one platform. FarmTab is designed to enable seamless data collection from various sensors such as temperature, pH level, Electrical Conductivity (EC) and Oxidation-Reduction Potential (ORP) in urban farm condition. The AI models track and predict various environment impacts on crop yield for urban farm.

Project Members:

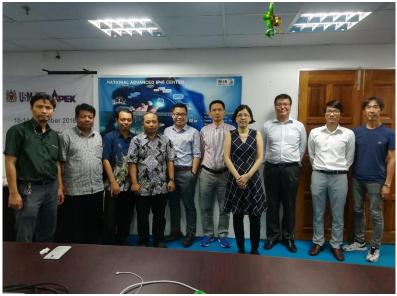
Name	Affiliation
Chong Yung Wey, Widad Ismail, Tan Eng Kee, Hasnuri Mat Hassan	USM, Malaysia
Ooi Boon Yaik, Lee Wai Kong	UTAR, Malaysia
Muhammad Niswar, Zainal, Zulkifli Tahir, Abdul Azis	UNHAS, Indonesia
Achmad Basuki, Raden Arief Setyawan	UB, Indonesia
Naoki Shinohara	Kyoto University, Japan

Project Duration:

24 months

Target Countries:

South East Asia



Project's Kick-off Meeting

July 2019 at Penang, Malaysia

- Discussed strategic and operational issues of the project implementation.
- Refined the project methodology, exchanged ideas and discussed the approach for research and development collaboration.
- Testbed will be setup at USM, UTAR, UB and UNHAS.

FARMTAB Hardware Design

Vertical shelving system

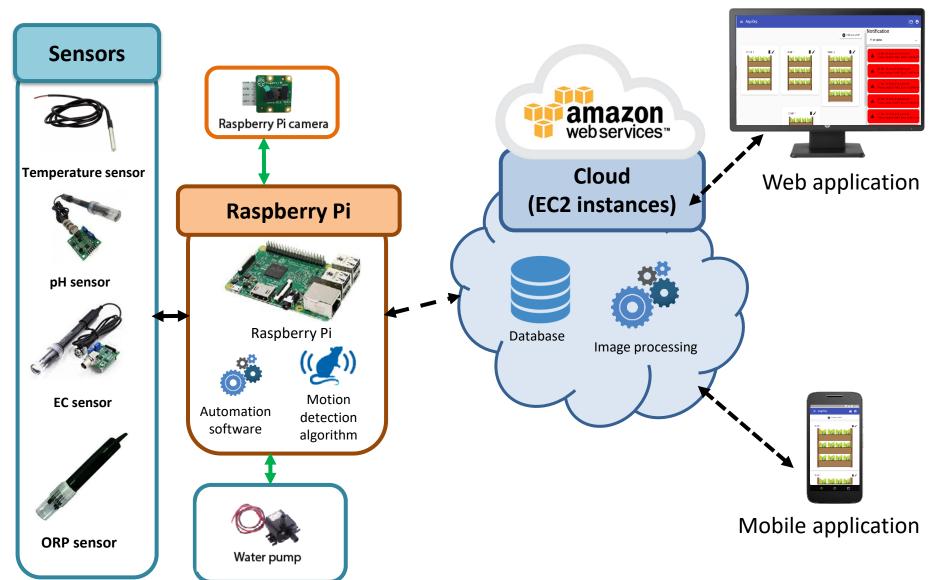
Crops that will be grown and analysed at each institution:

Lettuce

USM + UTAR

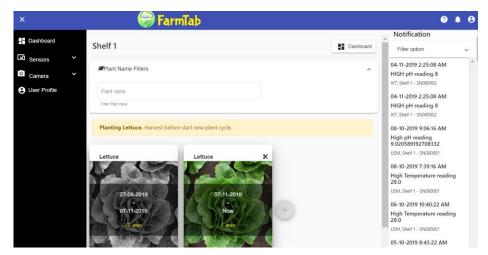
Red Spinach

UNHAS

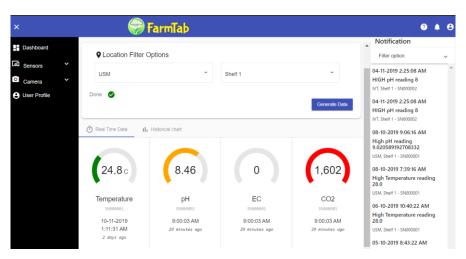


Bak Choy

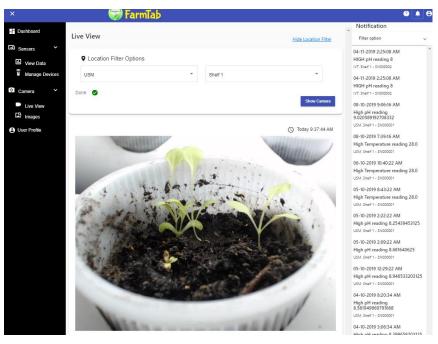
UB



FARMTAB System Architecture


FARMTAB Research & Development

Dashboard


Historical sensor data

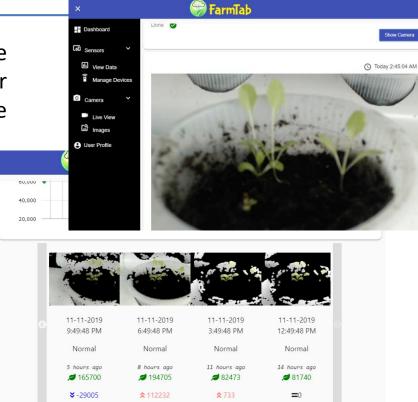
Real time sensor data

FARMTAB Research & Development

Live view

Image Processing




FARMTAB Research & Development

All the data is captured in AWS cloud server. The data format is standardised so that every partner uses the same platform for data gathering. The frequency of the data that is captured:

Sensors: every 1 hour

Image: every 3 hours

Original Image () Processed Image

Research and Development Description	Activities	Completion Date
A: Design and develop solar-powered shelving system	a: Mechanical design of shelving with lighting b: Design of solar energy harvester	Month 4
B. Design and implement the precision agriculture control system	a: Develop sensor nodesb: Develop software for real-time monitoring of sensor datac: Algorithm for control system	Month 8
	d: Obtain dataset for illness for different crops	Month 12
	e: Develop image processing algorithm in detecting illness in crops	Month 15
	f: Develop monitoring solution for agriculture control system using mobile sensor nodes	Month 18
C. Field trial and validation	a: Field test and implementation of proof of concept in ASEAN regionb: Data analysis and visualization of precision agriculture system	Month 24

- Purchase of experimental equipment (remaining)
- Meeting and demonstration of experiment in Makassar (Indonesia), Malang (Indonesia) and Kuala Lumpur (Malaysia)
- Presentations at International Conferences
- Journal papers publications

SOCIETAL IMPACT

Economy

Testing with a local urban farmer to increase yield

Environmental Impact

Providing data to biologist to develop new fertiliser that is environmental friendly

Open Data

Making dataset for illness for different crops public

Thank you for your attention!

Yung-Wey Chong Universiti Sains Malaysia