

Cloud Centric Participatory Mobile Sensor Network for Smart City/Nation

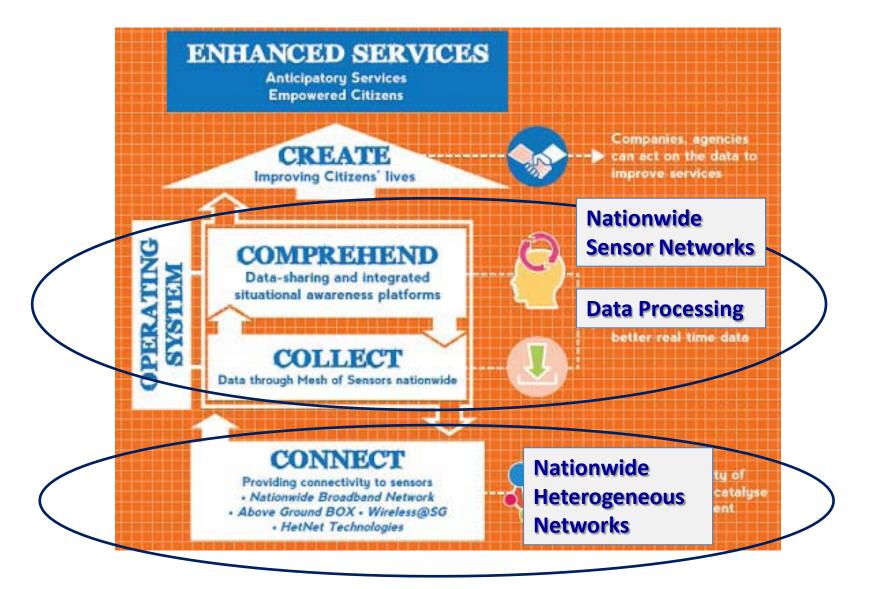
Sumei Sun (<u>sunsm@i2r.a-star.edu.sg</u>) ASEAN IVO Forum, Kuala Lumpur, Malaysia

26 November 2015

Outline

- The Smart City and Smart Nation
- Sensor Networks in Smart City/Nation
- Mobile Sensor Networks(MSN) versus Fixed Sensor Networks
- Computing in MSN
- Participatory MSN
- Research Challenges in Participatory MSN
- Summary and conclusions

Singapore's Smart Nation Vision


Singapore's Smart Nation Vision

 Improve the quality of life for individuals, and business opportunities for enterprises

- An anticipatory Government that can better serve the citizens and better able to use technology to enhance public services
- Empowering citizens to be able to be more participatory in engaging government, as well as businesses, to make more informed decisions and meaningful choices in their daily living

The Smart Nation Platform

Nation-wide/City-wide Sensor Networks

Dense and fixed deployment of sensors everywhere??

Or limited number of sensors on the move?

(Falle

YE

Nation-wide/City-wide Sensor Networks

Dense and fixed deployment of sensors

- Large number of sensors and gateways
 - Power supply
 - Camouflage into the environment
 - 0 ...

Or limited number of sensors on the move?

Sensors on the Move

- Multiple sensors embedded on vehicles
 - Noise
 - Pollution
 - Temperature

- ..

- On-vehicle gateway aggregating information from both on-vehicle and off-vehicle sensors
- Vehicles on the move, hence guaranteed coverage with sufficient number of vehicles
- Location stamp enabled by vehicle-integrated GPS
- The total number of sensors and gateways significantly reduced

Sensors on the Move

- Timely information transfer to cloud with vehicle-to-vehicle and vehicleto-infrastructure communications
- More can be possible vehicle itself as a sensor
 - Congestion information
- Inherent adaptive mechanism
 - During busy hours, the many vehicles on the road provide detailed coverage of the traffic conditions both in space/area and in time scale
 - During the less busy hours, the much fewer vehicles on the road provide more sparse sampling of the traffic conditions
 - acceptable for less demanding coverage and updating frequency
 - good tradeoff between accuracy, efficiency, as well as quality of experience to road users

A Closer Look at the Two Architectures

Fixed Wireless Sensor Networks

- Large number of sensors for finegrained data acquisition
- Large number of gateways for coverage
- (Usually) low duty cycles of data transmission
 - Sleep mode and duty-cycle management
- Challenging to
 - Arrange suitable locations
 - Power the sensors and gateways
 - Camouflage the sensors/gateways into the environment

Mobile Wireless Sensor Networks

- Much less number of sensors by taking advantage of mobility
- **On-vehicle gateway** for data aggregation and processing
 - Both on-vehicle and off-vehicle sensors
- Vehicle as the power source
- Vehicular communication network for transmitting the sensing data
- Enhanced resilience to errors with inherent nature of redundancy and repetition

Design Challenges and Possible Mitigation

- Highly dynamic network topology
 - Mobility pattern information may be used to guarantee
 - sufficient coverage
 - Timely update of information
 - Joint engagement of vehicles with
 - regular routes and mobility pattern, e.g., buses
 - Random pattern, e.g., taxis
- Computational structure
 - Cooperative versus non-cooperative sensing and compression
 - Edge computing versus cloud computing
 - Tradeoff between compute and communicate
- Incentive schemes for vehicle owners' participation
- Privacy and security protection for vehicle owners

Proposed Approach

Theoretical modeling

Experimental verification

- Coverage versus number of vehicles versus updating frequency
 - o Fixed & random routes
- Computational structure
 - Edge computing versus cloud computing versus hybrid of both
- Participation versus privacy protection
 - o Incentive mechanism
 - o Privacy preservation
- Impact of mobility

Summary and Conclusions

- Wireless sensor network is an essential part of smart city, smart nation
- Billions of devices to be connected to internet
- A mobile sensor network is proposed by leveraging connected vehicles
 - Less sensors
 - Less gateways
 - Better resilience
 - Guaranteed coverage
- Research and design challenges need to be overcome for successful implementation and deployment

Thank you!

Online: <u>www.i2r.a-star.edu.sg</u> <u>www.facebook.com/i2r.research</u>

Institute for Infocomm Research (I²R)