

www.utm.my

ASEAN IVO Forum 2015

Laser Transmitter Adaptive Feedforward Linearization System for Radio over Fiber Applications

> Authors: Mr. Neo Yun Sheng Prof. Dr Sevia Mahdaliza Idrus Prof. Dr Mohd Fua'ad Rahmat Dr Atsushi Kanno

www.utm.my

Background

Optical Feedforward Linearization System

Feedforward Loops Setup

Experimental Results

Adaptive Control System

Conclusion

www.utm.my

Radio over Fiber Technology:

Smaller cell size:

- Fiber closer to users
- Less user per cell
- Better frequency reusability
- Reduced RF power (EMI)

www.utm.my

BTS Coverage vs Distributed Antenna Systems

Consolidating signal processing functions:

- Small RAU size and power consumptions
- Easy installations and maintenance
- Perfect coordination between RAUs
- Multi-service operation
- System upgradability and reconfigurability

www.utm.my

RoF – Basic Structure of System

www.utm.my

Rate Equation for Laser Diode

$$\frac{dQ}{dt} = \Gamma g(N - N_{tr})(1 - \epsilon Q)Q - \frac{Q}{\tau_p} + \beta \Gamma \frac{N}{\tau_n}$$
$$\frac{dN}{dt} = \frac{I}{eV} - \frac{N}{\tau_n} - \Gamma g(N - N_{tr})(1 - \epsilon Q)Q$$

Dynamic Nonlinear System: Produce Harmonic Distortion and Intermodulation Distortion

www.utm.my

Linearization Techniques: Quantitative Comparison

Linearization method	Operating	Correction	Correction
	frequency	Bandwidth	capability (dB)
Electronic predistortion	Up to 14 GHz	Up to 500 MHz	10 - 25
Feedback	Up to 2.5 GHz	Narrow band	15 - 25
Optical injection	Up to 18 GHz	NA	10 - 25
Dual parallel modulation	Up to 8 GHz	Narrow band	20 - 30
Quasi feedforward	Up to 2.1 GHz	NA	17 - 35
Feedforward	50 MHz–18 GHz	Up to 850 MHz	Up to 38

Feedforward: Need for Adaptation

- Feedforward is a sensitive scheme, where the magnitude, phase shift and propagation delay along the feedforward path has to be properly tuned to optimize the distortion cancellation of the system.
- The magnitude and phase adjustments are also bound to be disrupted by any sort of drift and process variations such as temperature effect, laser aging, and input signal variations
- For practical implementations the feedforward system has to be realtime adaptive in terms of its component parameters.

Optical Feedforward

www.utm.my

UNIVERSITI TEKNOLOGI MALAYSIA

This loop of cancelling the distortion product from the primary laser diode output is called error cancellation loop (ECL).

Electrical path

Feedforward Loops Setup

www.utm.my

Magnitude and Phase Matching:

i) Adjust the reference signal magnitude close to the original signalii) Adjust the reference signal phase till the two signals are in anti-phase

Problem → Nonideality of vector modulator (magnitude adjustment inconsistent over different phase adjustments)

Solution:

 $G_{i+1\,dB} = G_{i\ dB} \pm 20\log_{10}(1+10^{\frac{\chi_{dB}}{20}})$

G = vector modulator gain

Propagation Delay Matching:

Cancellation between two identical signals separated by a propagation delay of Δt :

The propagation delay, Δt can be calculated as : $\Delta t = \frac{1}{\pi \Delta t}$

$$\Delta t = \frac{1}{\pi \Delta f} \cdot \sin^{-1}(\pm \frac{1}{2} \cdot 10^{\frac{x_{dB}}{20}})$$

The path length difference, ΔL can be calculated as :

 $\Delta L = \Delta t \cdot c$

, where c is the speed of light constant

Experimental Results

www.utm.my

Device: EA modulator integrated DFB laser diode module Operating Freq: 2.3 GHz Input power: 10 dBm λ $_{LD1} = 1547 \text{ nm}$, $~\lambda$ $_{LD2} = 1549 \text{ nm}$

Laser transmitter output before feedforward linearization (10 MHz freq spacing)

Laser transmitter output after feedforward linearization (10 MHz freq spacing)

The IMD3 level for the uncompensated system is about -21 dBc. A reduction of 14 dB has been achieved for both IMD3 products, equivalent to a bandwidth of 40 MHz.

Experimental Results

www.utm.my

linearization (1 MHz freq spacing)

Laser transmitter output after feedforward linearization (1 MHz freq spacing)

By narrowing down the freq spacing to 1 MHz, the achievable reduction for both IMD3 products has increased to 20 dB. The system is expected to achieve a larger margin of reduction by further improving the path delay matching.

Adaptive Control System

www.utm.my

Adaptive Algorithms:

Least Mean Square (LMS) V Algorithm:	S Recursive Least Square (RLS) Algorithm:
$w(n) = w(n-1) + \mu * x(n) * e^*(n)$	$g(n) = x(n) / \{ \lambda * \Phi(n-1) + x(n) ^2 \} $ (1) $\Phi(n) = \lambda * \Phi(n-1) + x(n) ^2 $ (2) $w(n) = w(n-1) + g(n) * e^*(n) $ (3)
Stochastic	Deterministic
Low computational complexity	High computational complexity
Slower convergence	Fast convergence
Mean square error trade-off with convergence speed	Converge to optimal solution
Fast response to input changes	Slow response to input changes

Adaptive Control System

www.utm.my

Performance Comparison between LMS and RLS

Signal Cancellation Loop:

The RLS algorithm is converging faster at the beginning, but the LMS algorithm is settling down more steadily.

Adaptive Control System

www.utm.my

Error Cancellation Loop:

The error cancellation loop input signal is dependent on the output from SCL, hence it is a time varying signal. It can be seen that the RLS algorithm has poor convergence towards the steady state, while the LMS algorithm is still showing a steady convergence.

- The optical feedforward linearization system has achieved a suppression of 14 dB in IMD3 products over a bandwidth of 40 MHz. Suppression by a larger margin can be achieved with better delay matching.
- On the adaptive control part, the LMS algorithm is chosen over the RLS algorithm in this application because it has shown more stability, robustness, and less computation demanding.
- The outcome of this project serves as the exploration for a future proof alternative for the widely researched predistortion technique, where laser transmitters of even higher performance are in demand for future wireless communication systems in the long run.

www.utm.my

Thank You