

DESIGN AND MANUFACTURE OF RECONFIGURABLE ROBOTS FOR RESCUE EARTHQUAKE VICTIMS

IR. UDINK AULIA M.ENG IR. SYAHRIZA M.ENGSC DR. IR. MUHAMMAD DIRHAMSYAH MT

MECHANICAL ENGINEERING DEPARTMENT ENGINEERING FACULTY SYIAH KUALA UNIVERSITY 2018

COLLAPSE BUILDING

TECHNOLOGY TO HELP RESCUE WORKER

• Snake robot

• Modular Self reconfigurable Robot

CONTROL

Q

0

DOCKING PROCEDURE

- wandering and searching phase;
- position and angle adjustment phase; and,
- docking phase

In this step, the active robot wanders under a certain strategy to explore and search for the correct passive docking surface whose LED lights formed a specific pattern. After finding the target passive docking surface, the robot will enter the next phase

During this phase, a series of adjusting movements need to be performed. In each adjusting

movement, the active robot rotates at first to adjust its orientation and then moves forward to adjust its

nosition In this phase, the robot opens its hooks and moves forward until it contacts the passive docking

SOFTWARE ARCHITECTURE

PHASE RELATIONSHIP IN ADJACENT JOINT OF A SNAKE ROBOT

a a phase lag between neighbor segments during forward serpentine locomotion **b a phase lead** between neighbor segments during backward serpentine locomotion.

SNAKE LOCOMOTION

 Snakes use a wide variety of gaits such as serpentine locomotion, inchworm-like locomotion and sidewinding locomotion that make them survive with high adaptability in complex environment.

CPG (CENTRAL PATTERN GENERATOR) CONTROLLER

(b) The model of the articulation mechanism

A simulated model of a snake

Topological structures with six coupled Hopf oscillators: **a** two-way double chain

MAIN PARAMETER SNAKE ROBOT

Table 1 Main parameters of the snake robot

Parameters	Values
Snake Unit	10
DOF of a joint	2
link length(m)	0.18
link radius(m)	0.08
Joint torque(N.m)	0.96
Motion range of pitch angle(°)	[-40,40]
Motion range of yaw angle(°)	[-40, 40]

Table 2 CPG parameters to generate rhythmic output during the serpentine locomotion	
Parameters	Values
$\omega_i(\text{Hz})$	1
$\rho_L(rad)$	$\pi/6$
$\rho_R(rad)$	$\pi/6$
δ(rad)	$\pi/5$
$\varphi(rad)$	$\pi/2$
a	0.4
b	1
с	0.9
d	1
λ	0.75
k _{min}	4

SIMULATION OF SIDEWINDING GAIT

The screenshots of the simulated snake robot during the sidewinding gait on ADAMS. Main parameters are $\omega = 1$ Hz, $\rho = p/6$ rad, $\rho R = p/36$ rad, $\varphi = p/2$ rad, d = 3p/10 rad

Thank you