Toward a high resolution temperature distribution map using crowdsourcing smartphone battery temperature

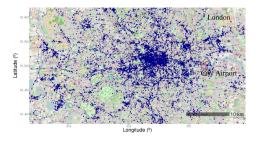
Nguyen Hai Chau

chaunh@vnu.edu.vn, nhchau@gmail.com

University of Engineering and Technology Vietnam National University, Hanoi VIETNAM

- Temperature is a physical quantity that is very important to environment and human health
- Air temperature data, including urban one, is important for meteorology, energy demand planning, urban heat islands (UHI)¹, effects of temperature on human health
- Air temperature data of cities is often not available, especially high temporal and spatial resolution data

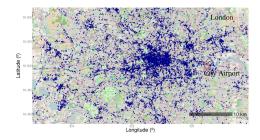
¹UHIs are areas in urbans those have temperature higher than their surroundings


Temperature data observation approaches

• Observation approaches:

Method	Temporal resolution	Spatial resolution	Accuracy
Weather station	High	Low	High
Satellite	Low	High	Good
Internet of Things	High	Average	High
Smartphone	High	High (in cities)	Good

- Each smartphone has a battery temperature sensor to avoid overheating
- The sensor can be used to measure air temperature indirectly


Overeem's crowdsourcing approach

- Overeem et al.: Collect data from a large number of smartphones, then use a heat transfer model (HM)² to estimate air temperature:
 - Filter: [Just plugged in + start charging] and [being turned on/off + discharging] and [battery temperature from 10-47°C]
 - Average temperature readings by space and time
 - Build a simple linear regression model to estimate air temperature from the averaged values

² A. Overeem et al., Crowdsourcing Urban Air Temperatures from Smartphone Battery Temperatures, Geophysical Research Letters 40, 2013,

Overeem's crowdsourcing approach

- Estimated temperature is representative for areas, such as cities
- Accuracy depends on number of readings
- Assessment: Compare to a weather station (distance 5-27 km)
- Android app: WeatherSignal (https://goo.gl/Fefgoi)
- Promising results in some cities: Rome, Sao Paolo³, Buenos Aires

³ A. Droste, A. Overeem et al., Crowdsourcing Urban Air Temperatures through Smartphone Battery Temperatures in Sao Paulo, Brazil, Journal of Atmospheric and Oceanic Technology **34**, 2017

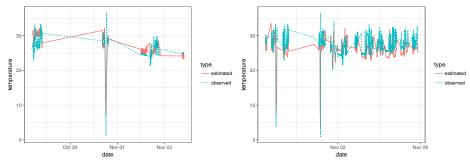
Our approach: crowdsourcing + statistical model

• We use a statistical model (SM):

- When a smartphone is in idle state, its battery temperature is correlated with its surrounding air temperature
- We build a simple linear regression model to estimate air temperature from *idle* smartphone battery temperature readings
- Difference from HM approach: Estimated temperature is representative for each smartphone environment:
 - Each smartphone estimates air temperature independently
 - Ability to have maps of temperature distribution
- Assessment: Compare to a nearby thermometer

Experiments design and model building

• Equipments:

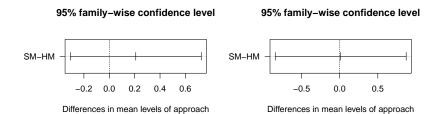

Smartphone model	Manufacturer	OS version	Air temperature sensor
Nexus 4	LG Electronics	Android 5.1	not available
Galaxy Note 2	Samsung	Android 4.4.2	not available
Galaxy Note 3	Samsung	Android 4.4.2	available

- Environments to collect data: $0 4^{\circ}C$, $20 25^{\circ}C$ and $30 35^{\circ}C$
- A part of temperature data collected from the Note 3 is for training data, the rest and data from Nexus 4, Note 2 are testing data
- Our model for air temperature estimation:

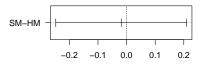
$$T_{air} = 0.8765 \times T_{battery} + 0.4776,$$
 (1)

coefficient of determination of the model is $R^2 = 0.79$.

Experiment results



Left: Test result for Samsung Galaxy Note 2, right: test result for LG Nexus 4.


Smartphone model	ME	MAE	Correlation	R ²
Nexus 4	1.11	1.86	0.79	0.62
Galaxy Note 2	-0.82	2.03	0.74	0.55
Galaxy Note 3	0.00	0.95	0.89	0.79

ME: Mean error, MAE: Mean absolute error, R^2 : Coefficient of determination

Comparison of SM and HM approaches

95% family-wise confidence level

Differences in mean levels of approach

Left, right, bottom: Comparison using ME, MAE and R^2 metrics SM = Statistical model, HM = Heat transfer model

Nguyen Hai Chau (VNU UET) Crowdsourcing mobile battery temperature

Smart Thermometer: A Proof of Concept app

• Smart Thermometer (https://goo.gl/G2BEPQ) is an Android app for estimation of air temperature using Equation (1)

- Beta launch: end of 2015, public launch: Mar 2016. Current status:
 - More than 60K downloads, average 1,200 use per day, user rating = 3.2/5.0
 - Data from the app is not yet collected

- SM is comparable to HM in ME, MAE and R^2 metrics
- Advantages of SM:
 - Each smartphone estimates air temperature independently
 - Maps of temperature distribution
- Future works:
 - Additional predictor: battery current (Android 5.x or newer)
 - Use an independent temperature sensor for model building
 - Recognization of smartphone context: Indoor/outdoor, in pocket (clothing), in transportation means
 - Anonymous data collection, data fusion with other source of data (Landsat, IoT)

Thank you for your attention!

・ 何 ト ・ ヨ ト ・ ヨ ト