

IOT SYSTEM FOR PUBLIC HEALTH AND SAFETY MONITORING WITH UBIQUITOUS LOCATION TRACKING

Dr. David Chieng (MIMOS, Malaysia) Dr. Huan-Bang Li (NICT, Japan) Dr. Arosha Senanayake (UBD, Brunei) Dr. Dao Trung Kien (MICA, Vietnam)

Innovation for life

ASEAN IVO Forum 2017 Project Review

IoT System for Public Health and Safety Monitoring MIMOS with Ubiquitous Location Tracking

Develop a system which enables tracking of location, lifestyle and health status in promotion of public health and safety in ASEAN countries taking into consideration ASEAN culture, lifestyles, behaviours and infrastructures

Budget, Timeline and Overall Architecture

- Total budget = USD 77,900
- Duration = 2 years (April 2017 March 2019)

Work packages	Deliverables	Form of deliverables	
 <u>1. Mobile/Embedded Platform (Lead:</u> <u>MIMOS/NICT)</u> Design and implementation of embedded platform that supports continuous location tracking and motion reasoning on commercially available smartphones or specially designed, low- cost and energy-efficient wearable devices 	Mobile platformEmbedded device	 Platform SDK, software libraries Prototypes (hardware, software, testbed) 	
2. Multimodal Geospatial Localization Module (Lead: MICA) Development and integration new multimodal geospatial localization technologies which opportunistically harvest heterogeneous signals available for localization such as GPS, GSM, WiFi, Bluetooth, UWB, sensors in order to realize ubiquitous location tracking anytime anywhere	 Multimodal localization module/algorithms UWB, WiFi, BLE, GPS, sensors 	 Algorithms, performance results, publications Prototype demo 	
<u>3. Motion Reasoning Module (Lead: UBD)</u> Development and integration of Motion Reasoning module based on UBD's hybrid OS architecture	 Motion reasoning module/algorithms 	 Algorithms, performance results, publications Prototype demo 	

Workpackages	Deliverables	Form of deliverables
4. Server Monitor and Analytics (Lead: MIMOS) Development of server-end modules to monitor and analyze citizen's lifestyle, health and location. Using Mi-MIST platform to host data and analytic modules	 Server monitoring/ analytic module System integration 	 Monitoring/analytic platform, prototype software Use cases/demo apps
5. Pilot Trials (Lead: Depending on location) Pilot trials in selected ASEAN cities such as Hanoi, Kuala Lumpur and Bandar Sri Begawan. Ideally such trials are to be performed with local mobile operators	 Trials Selected application e.g. people tracking 	ReportsEnd users' feedbacks

Official project period: April 2017 – Mar 2019

Work package	2017-2018				2018-2	2019		
	April	July	Oct	Jan	April	July	Oct	Jan
WP1	Platfo	orm dev	elopm	ent				
WP2		Modu	le/algo	o dev	ion	<u>م</u> که		
WP3		Modu	le/alg	o dev	egrat	sting		
WP4					Inte	Tes	anal	ysis
WP5								trial

WP1: Mobile/Embedded Platform (Lead: MIMOS/NICT)

- 1. Mobile-based Indoor Location Platform supporting WiFi and BLE positioning:
 - Android/iOS SDK design
 - Algorithm study/evaluation
 - Machine learning techniques study
- 2. UWB Positioning Platform:
 - Two-way ranging algorithms (based on propagation time)
 - Testbed architecture design (also software interface) in MIMOS
 - Compliant design according to Malaysia regulatory

WP2: Multimodal Geospatial Localization Module (Lead: MICA)

- 1. Joint-Camera-Mobile-based Localization Module
 - Localization system architecture
 - Environmental model (XML driven)
 - Localization approach (fusion of heterogeneous data)
 - Navigation (shortest path, environment-aware, personalize-able)

• WP3: Motion Reasoning Module (Lead: UBD)

- 1. Motion Reasoning Module:
 - Motion Engine Laboratory setup
 - Module design:
 - » Signal acquisition
 - » Data processing
 - » Feature extraction, selection
 - » Modelling
 - » Evaluation, Visualization

Innovation for life

NICT

Way Ranging Used in NICT's System

Structure of NICT's System

NICT will provide this system for evaluation at MIMOS

Regulations on UWB

NICT is modifying devices to suit for Malaysia regulation

Sethod in Discussion to Fix Anchor

MICA

- Visualization
- User/robot localization, tracking & navigation
- Device management
- User information collection

- Unified environment model for
 - Localization
 - Signal attenuation for WiFi, RFID,...
 - Range information for cameras
 - Result validation
 - Result filter with map information

MySQL database

- Path-finding and navigation
- Visualization

3D Model

Autocad file

• Using XML

- Integration of multiple possible technologies
 - WiFi signals
 - RFID
 - Cameras
 - Bluetooth
 - Step count
 - Multimodal (combination of above technologies)

- Optimal path finding
 - Shortest path
 - Aware of walls, floors, stairs,...
 - Personalized on the basis of user context
 - Collision avoidance in dynamic environments

UBD

UBD Motion Engine

S.M.N. Arosha Senanayake, Umar Yahya, Siti Asmah @ Khairiyah Binti Haji Raub Motion Analysis Lab, Integrated Science, Universiti Brunei Darussalam, Tungku Link, Gadong, BE 1410, Brunei Darussalam.

arosha.senanayake@ubd.edu.bn

Universiti Brunei Darussalam Brunei Darussalam

Background Information

Universiti Brunei Darussaiam Brunei Darussalam

Introduction – UBD Motion Engine

UBD Motion Engine Laboratory Set Up

IntelliHealth

MOTION ANALYSIS LAB

Prototype Testing: Active Healthy Lifestyle

National Netball Players: Defined Tasks by Coach

IntelliHealth

MOTION ANALYSIS LAB

Universiti Brunei Darussalam Brunei Darussalam

Bata Visualization: Class A

Х			
Class	THS	AHS	
Α	55%	33%	
Α	67%	44%	
Α	88%	67%	
Α	77%	54%	
Α	97%	77%	
Α	68%	43%	
Α	89%	66%	
Α	88%	34%	
Α	62%	61%	
Α	59%	49%	
Average	75%	53%	

Class A: Outstanding Player

Bata Visualization: Class B

X			
Class	THS	AHS	
В	77%	44%	
В	89%	56%	
В	94%	67%	
В	57%	43%	
В	82%	77%	
В	66%	55%	
В	89%	66%	
В	90%	78%	
В	57%	55%	
В	59%	50%	
Average	76%	59%	

Class B: Very Good Player

Bata Visualization: Class C

Х			
Class	THS	AHS	
С	88%	66%	
С	76%	45%	
С	66%	59%	
С	67%	34%	
С	89%	55%	
С	90%	67%	
С	55%	45%	
С	78%	43%	
С	88%	23%	
С	90%	44%	
Average	79%	48%	

Class C: Average Player

Bata Visualization: Class D

Х			
Class	THS	AHS	
D	98%	67%	
D	78%	77%	
D	66%	54%	
D	60%	44%	
D	54%	66%	
D	59%	34%	
D	88%	66%	
D	78%	78%	
D	77%	68%	
D	90%	66%	
Average	75%	62%	

Class D: Below Average