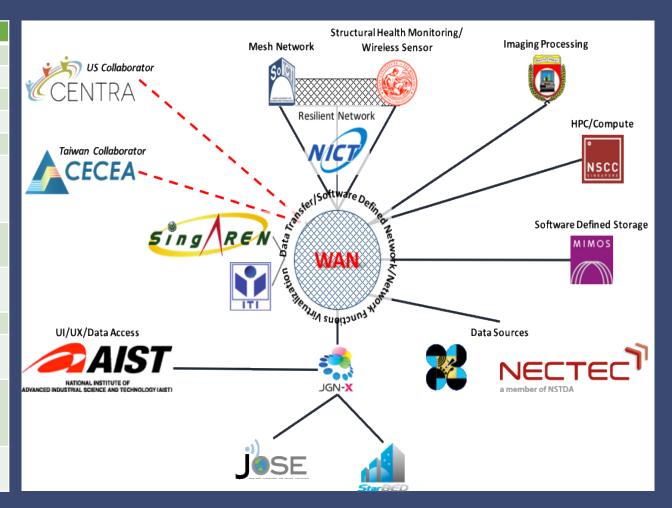
ASEAN Forum for Software Defined System on Disaster Mitigation and **Smart Cities**

Project Status Updates ASEAN IVO Forum 2016

25 November 2016, Hanoi, Vietnam

Outline

- Project Background
- Project Activities for Year 1
- Focus Areas in Year 1
 - Visualization of Distributed Environmental Data
 - SDN-IP Peering for IoTs Data Transmission (Resilient Transnational Network with SDN-IP)
 - SDN/NFV Infrastructure for Disaster Mitigation and Smart Cities


Goals: This project addresses the impact of climate change on cities and urbanization, with particular relevance to the priority area of improving environmental resilience and more specifically in disaster mitigation.

Activities:

- Develop a Software Defined System architecture blueprint for disaster mitigation, crisis communication, and emergency management that can monitor and report disaster events in near-real-time.
- Investigate programmability aspects of IoTs technologies, networking, and edge/cloud computing platforms.
- Conduct field testing of potential use cases using NICT's existing testbeds such as JGN-X, Starbed, and JOSE.
- Organize workshops with ASEAN members to disseminate R&D results.
- Dialogue with PRAGMA (NSF, US), CENTRA (NSF, US), and CECEA (Taiwan) on similar R&D challenges to accelerate project activities.

	Member	Affiliate Institution	Country
1	Jason HAGA	AIST	Japan
2	Eiji Kawai	NICT	Japan
3	Hiroshi Kumagai	NICT	Japan
4	Hong H. ONG	MIMOS	Malaysia*
5	Jing Yuan LUKE	MIMOS	Malaysia
6	Myint Myint SEIN	University of Computer Studies, Yangon	Myanmar
7	Alejandro H. Ballado Jr.	Mapua Institute of Technology	Philippines
8	Jelina Tanya H. Tetangco	ASTI	Philippines
9	Bu Sung LEE	SINGAREN	Singapore
10	Kanokvate Tungpimolrut	NECTEC	Thailand
11	Hong Son NGO	Hanoi University of Science and Technology	Vietnam
12	Van Dzung DINH	Vietnam National University (Hanoi)	Vietnam

Project Activities for Year 1

January-March 2016

- ASEAN IVO Forum @ Philippine in January
- Proposal submitted in February.
- Proposal approval received at end of March

End of April 2016

 Project Kick-off Meeting (via teleconference) May-August 2016

 Members interaction on work areas and their project in progress Septembe r 2016

Project team
 1st Meeting
 @ PRAGMA 31, Thailand

November 2016

• ASEAN IVO Forum @ Hanoi

Today

December 2016

Project team
 2nd Meeting
 @ SEAIP
 2016, Taiwan

February 2017

Work areas
 PoC demo
 planned at
 month end

1st Project Meeting @ PRAGMA 31, Bangkok (September 2016)

- 3 Keynotes
 - Dr. Chen Academia Sinica
 - Prof. Jose CENTRA
 - Dr. Lin CECEA
- 1 Workshop
 - AirBox hands-on

- 3 work areas defined
 - WP1: Visualization of Distributed Environmental Data
 - WP2: SDN-IP Peering for IoTs Data Transmission (Resilient Transnational Network with SDN-IP)
 - WP3: SDN/NFV Infrastructure for Disaster Mitigation and Smart Cities

	WP1: Visualization of Distributed Environmental Data	WP2: SDN-IP Peering for IoTs Data Transmission	WP3: SDN/NFV Infrastructure
Objectives	 To create reliable software defined distributed storage platform for seamless access and visualization 	To federate IP networks with SDN-IP for resilient and effective infrastructure	 To build a ASEAN SDN/NFV Testbed (Philippines, Vietnam, Myanmar, Japan, Taiwan)
Problems to be solved	 To ensure consistent access to environmental data To ensure data resiliency To facilitate data discovery To address data security To enable ease and standard visualization 	 Interconnection through legacy internet by IP tunneling Migration to native SDN connection (work with POC for SDN/IP (performance, feasibility) Integration with access network such as Free space optics Automatic configuration of test environment on PRAGMA-ENT 	 Reliable/resilient network loTs enabled transport system (environmental sensors and gateways/MQTT broker) Case study 1: Early Warning Systems (e.g. flood, typhoon, earthquake monitoring) Case study 2: Smart Environment
Team members	 ASTI (Data resource, Data Management) MIMOS (Distributed Object Storage) AIST (Data Visualization) NECTEC (Data resource) NICT (Testbed, SDN, NFV) 	HUSTNICTASTINECTECSINGAREN	VNUHUSTMAPUAUCSYNICT
Additional collaborators	NCHC (Additional use cases)NAIST (SDN, NFV, PRAGMA-ENT)	NCHCOsaka U	NCHCOsaka U

ualization Storage

Phase 1:

Phase 2:

Phase 3:

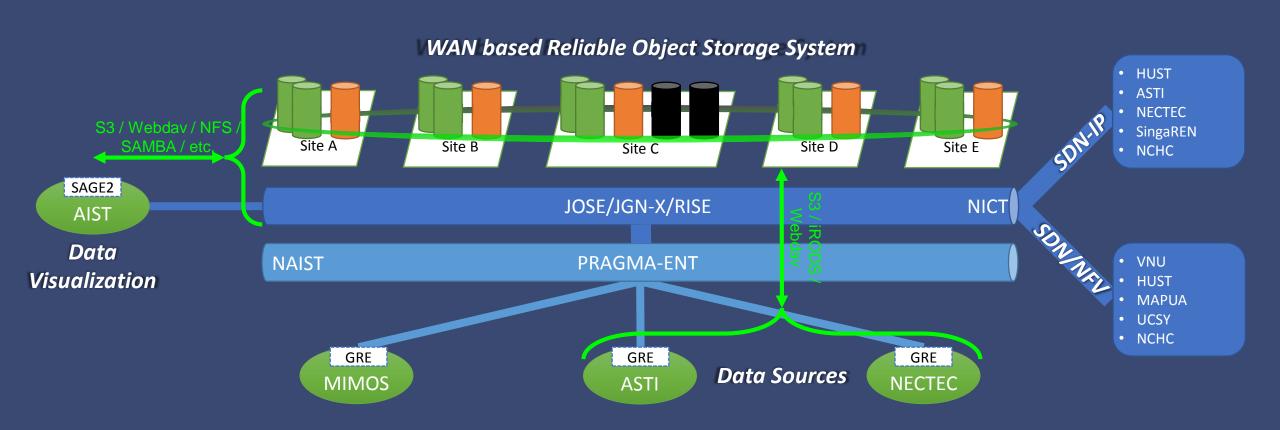
- Setup and configure the distributed object storage on the NICT Testbed (JOSE)
- Optimization and tuning
- Data harvesting (Data migration and validation, e.g. environmental data, NOAH data, Dam data)
- Data management and access methods,
 e.g., VO concept, "Dropbox" like.
- Data visualization (SAGE2)

 Software Defined Storage Infrastructure (leveraging SDN-IP and SDN/NFV)

WP2: SDN-IP

- Connect JAPAN (NICT) –
 Taiwan (NCHC) with SDN-IP
- Introduce JOSE and IOT testbed to SDN-IP
- Connect Vietnam (HUST) and Philippines (ASTI) with IP tunneling and migrate
- Building software based environment for SDN (Te-Lung)
- IP tunneling base OpenFlow environment

IoT testbed inclusion


Inclusion of application

WP3: SDN/NFV ofrastructure

- Establish a local SDN/NFV testbeds
- Establish the international connections between the testbed and with the NICT JOSE, RISE and PRAGMA-CENTRA, CECEA
- Set-up trials/tests of proposed reference solutions(resilient/loTs)

Reference Architecture

Thank you