

RF Energy Harvesting for Future Communications

TAN HANH - VO NGUYEN QUOC BAO

POSTS AND TELECOMMUNICATIONS INSTITUTE OF TECHNOLOGY, VIETNAM

Outline

Introduction
 System Model
 Model #1
 Model #2

Conclusion

INTRODUCTION

Direct Transmission

Outage Probability

$$OP = Pr[log_{2}(1+\gamma) < R]$$

= $Pr(\gamma < \gamma_{th} = 2^{R} - 1)$
= $1 - exp\left(-\frac{\gamma_{th}}{\overline{\gamma}}\right)$
High SNR $OP \approx \frac{\gamma_{th}}{\overline{\gamma}}$

MIMO technology

- Advantage: Improving spatial diversity gain
- Disadvantage: Having constraint on space

INTRODUCTION

- Cooperative Communications
 - 🗸 At Relay
 - Amplify-and-Forward
 - Decode-and-Forward
 - ✓ At Destination
 - Maximal ratio Combining
 - Selection Combining

Full spatial diversity gain: TWO

INTRODUCTION

Relay selection

- Full Relay Selection
 - Diversity gain = number of relays
- Partial Relay Selection
 - Diversity gain = 1 (2 if direct transmission is available)

Relays availability
 Fairness on selecting relays, i.e., energy issue

Transmit and receive its own data: **battery energy**

Receive and forward data for other nodes: harvested energy

Time switching receiver mechanism

□ Harvesting energy and sending signals

- The first phase: The relay harvests energy from the source signal
- The second phase: The source broadcasts its signal
- The third phase: The relay forwards the source signal to the destination

 \Box The harvested energy of *R* during energy harvesting time αT

$$E_{R} = \varepsilon \alpha P_{s} \left| h_{1} \right|^{2} T$$

□ The transmit power of the relay

$$P_{2} = \frac{E_{R}}{(1-\alpha)T/2} = \frac{2\varepsilon\alpha P_{1}|h_{1}|^{2}}{1-\alpha}$$

□ The instantaneous signal-to-noise ratio (SNR) of the first hop and second hop

$$\gamma_{1} = \frac{P_{1} \left| h_{1,k^{*}} \right|^{2}}{N_{0}} \qquad \gamma_{2} = \frac{P_{2} \left| h_{2} \right|^{2}}{N_{0}} = \frac{2\varepsilon \alpha P_{1} \left| h_{1,k^{*}} \right|^{2} \left| h_{2} \right|^{2}}{(1 - \alpha) N_{0}}$$
Correlated

S $\gamma_{\Sigma} = \min(\gamma_{1}, \gamma_{2})$ $= \min\left(\frac{P_{1}|h_{1,k^{*}}|^{2}}{N_{0}}, \frac{2\varepsilon\alpha P_{1}|h_{1,k^{*}}|^{2}|h_{2}|^{2}}{(1-\alpha)N_{0}}\right)$

$$OP \approx 1 - \sqrt{\frac{\gamma_{th}(1-\alpha)N_0\lambda_1}{2\varepsilon\alpha P_1\lambda_2}} \operatorname{BesselK}\left[1, 2\sqrt{\frac{\gamma_{th}(1-\alpha)N_0}{2\varepsilon\alpha P_1\lambda_1\lambda_2}}\right]$$

 \Box The harvested energy of R_k during energy harvesting time αT $E_{k} = \varepsilon \alpha P_{s} \left| h_{1,k} \right|^{2} T$ The relay having the highest R □ The selected relays is chosen as harvested energy among N S D $k^* = \arg \max_{k=1,\dots,N} E_k$ available relays will be the forwarder of the next hop The system outage probability $OP = 1 - \sum_{k=1}^{N} (-1)^{k-1} {\binom{N}{k}} \frac{2k}{\lambda_1} \sqrt{\frac{\gamma_{th}(1-\alpha)N_0\lambda_1}{2\varepsilon\alpha P_1k\lambda_2}} BesselK \left| 1, 2\sqrt{\frac{k\gamma_{th}(1-\alpha)N_0}{2\varepsilon\alpha P_1\lambda_1\lambda_2}} \right|$

Settings	Value
Target transmission rate [bits/sec/Hz]	1
Energy harvesting efficiency	0.75
Path loss exponent	3
S-R distance	0.5

Increasing number of energy harvesting relays improves the system performance

- The coding gain seems still to be increases since the number of relays increases
- At high SNRs, the approximation results match well with the simulation results.

- OP approaches 1 since $\alpha > 0.9$

- OP reaches the minimum value since $\alpha \,^{\sim}$ 0.39

Source: Transmit Antenna Selection

Destination: Maximal Ratio Combining

$$\gamma_{\Sigma} = \min(\gamma_{1}, \gamma_{2}) = \min\left(\frac{P_{S}}{N_{0}}\max_{i=1,\dots,N_{S}}|h_{1,i}|^{2}, \frac{2\eta\alpha P_{S}^{2}}{(1-\alpha)N_{0}}\max_{i=1,\dots,N_{S}}|h_{1,i}|\sum_{j=1}^{N_{D}}|h_{2,j}|^{2}\right)$$

Denote N_{t} as the number of truncated terms in the series, we can approximate $e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} \qquad \qquad e^{-\frac{b/\lambda_{2}}{x}} = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \left(\frac{b/\lambda_{2}}{x}\right)^{k}$ $OP \approx 1 - \sum_{i=1}^{N_S} \sum_{j=0}^{N_D - 1} \sum_{k=0}^{N_t} \frac{(-1)^{i+k-1}}{j!k!} \binom{N_S}{i} \frac{i}{\lambda_1} \left(\frac{\gamma_{th}}{\frac{2\varepsilon\alpha P_S \lambda_2}{(1-\alpha)N_0}} \right)^{-1}$ $\times \left[\frac{(-1)^{j+k}}{(j+k-1)!} \left(\frac{i}{\lambda_1}\right)^{j+k-1} \operatorname{Ei}\left(-\frac{i}{\lambda_1}\frac{\gamma_{th}}{\frac{P_s}{N_0}}\right) + \frac{e^{-\frac{i}{\lambda_1}\frac{\gamma_{th}}{P_s}}}{\left(\frac{\gamma_{th}}{\frac{P_s}{N_0}}\right)^{j+k-1}} \sum_{\ell=0}^{j+k-2} \frac{(-1)^{\ell}\left(\frac{i}{\lambda_1}\right)^{\ell} \left(\frac{\gamma_{th}}{\frac{P_s}{N_0}}\right)^{\ell}}{(j+k-1)(j+k-2)\dots(j+k-1-\ell)}\right]$

The system achieves full diversity

α is a complex
 function of number
 of transmit antenna
 and receive
 antenna as well as
 average SNR

Conclusion

Cooperative communication using relays:

- to extend coverage of wireless networks
- to improve the network performance
- Energy harvesting
 - to prolong network lifetime.
 - to solve the fairness in relay selection

EH based Incremental relaying networks

EH based Distributed Switch-and-Stay Combining Networks

Thank you for your attention