

Design and Implementation of Power Detector and UHF Converter for TVWS Application

Innovation for life

Nordin Ramli*, Tengku Azhar Long Sulaiman*, Hafizal Mohamad*, Takeshi Matsumura**, Kentaro Ishizu** *MIMOS, Malaysia, **NICT, Japan Email: nordin.ramli@mimos.my

Outline

- Introduction
 - TV White Space
- Spectrum Measurement
 - VHF and UHF Band Utilization
- Downconverter Implementation
- Integration Work and TVWS Prototype
 - Power Detector
 - Lab Experimental and Results
- Moving Forward
- Conclusion

Outline

Introduction TV White Space (TVWS)

- Spectrum Measurement

 VHF and UHF Band Utilization
- Downconverter Implementation
- Integration Work and TVWS Prototype
 - Power Detector
 - Lab Experimental and Results
- Moving Forward
- Conclusion

What is TV White Space?

- TV band white spaces are gaps left between broadcast channels. They occur in different places on different channels.
- Key enabling technologies that allow utilization of white spaces include Cognitive Radio and Geo-location Database.

Source: Jeffrey Yan, Microsoft, TVWS Industry Forum, SKMM Cyberjaya, Jun 2012

TVWS & Rural Communications

- What is it?
 - Using TV white spaces to provide a wireless connection to rural areas
- Why is TV white space spectrum attractive?
 - A cost-effective means to provide communications to rural areas that would be too expensive to serve by other means
- Benefits of VHF/UHF;

 \checkmark Long distance propagation \rightarrow Good for rural areas

 \checkmark Larger cell radius \rightarrow Smaller number of towers

Rural Internet Access

- TV white spaces will provide more widely available and cost effective access to the internet in underserved markets.
- The superior propagation characteristics provide much greater coverage range than existing unlicensed technologies.

TVWS Economic Potential

- A range of studies have looked at the potential value of licence-exempt use of spectrum. These include studies commissioned by:
 - 1. Ofcom (2006), by Indepen, Aegis and Ovum
 - 2. Microsoft (2009), by Richard Thanki (Ingenious Media)
 - 3. Google (2011), by respected US economists (Stanford Report)
 - 4. The Consumer Federation of America (2011)
- The last three have included estimates of the economic potential from the TV white spaces. Although they were focused on the US, with FCC proceedings in mind, the applications they identify are just as relevant in the UK and the rest of Europe, as they are in other parts of the world.

• References:

- 1. Ofcom, The economic value of licence exempt spectrum, December 2006: <u>http://stakeholders.ofcom.org.uk/binaries/research/technology-research/value.pdf</u>
- 2. R. Thanki, The economic value generated by current and future allocations of unlicensed spectrum, 8 September 2009, <u>http://fjallfoss.fcc.gov/ecfs/document/view?id=7020039036</u>
- Stanford Report: Milgrom, Paul R., Levin, Jonathan D. and Eilat, Assaf, The Case for Unlicensed Spectrum (October, 23 2011). Available at SSRN: <u>http://ssrn.com/abstract=1948257</u>
- 4. Consumer Federation of America, The Consumer Benefits of Expanding Shared Used of Unlicensed Radio Spectrum, Mark Cooper, 29th November 2011

Collaborative Project on TV White Space for Rural Communications

- From July 2014 June 2015 (one year)
- Collaborative Project between MIMOS and NICT
- Main Members:
 - MIMOS, Malaysia
 - NICT, Japan
- Associate Members
 - Universiti Teknologi Malaysia, Japan
 - Multimedia University, Japan
- Objectives:
 - To measure the of spectrum utilization and occupancy in Malaysia
 - To develop the TVWS transceiver prototype
 - To conduct the experimental on TVWS transmission

Outline

Introduction

 TV White Space

Spectrum Measurement VHF and UHF Band Utilization

- Downconverter Implementation
- Integration Work and TVWS Prototype
 - Power Detector
 - Lab Experimental and Results
- Moving Forward
- Conclusion

Frequency Allocation Table Malaysia

Band (MHz)	Bandwidth (MHz)	Service Allocations	
30 - 174	144	FM Radio, Maritime VHF, Amateur Radio, Radio Paging, Aeronautical Radionavigation, Space Research, Space Op.	
174 – 230	56	VHF TV	
230 – 470	240	Digital Trunk Radio Service, UHF Mobile Radio, Maritime UHF, Amateur Radio, CDMA 450, Aero	
470 – 798	328	UHF TV	
798 – 880	82	Analogue Trunk Radio Service, BWA, FWA,	
880 – 960	80	GSM 900, RFID	
960 - 1429	469	Galileo, COSPA-SARSAT, Radiolocation, Space Operation	
1429 – 1710	281	Radionavigation Satellite Service, L-band Digital Broadcasting	
1710 – 1880	170	BWA, GSM 1800	
1880 – 2200	320	TDD, MSS, FDD, FWA	
2200 – 2400	200	WIMAX, BWA	
2400 – 2500	100	ISM	
2500 – 2700	200	BWA	
2700 – 3000	300	Aeronautical Radionavigation, Radionavigation	

High Utilization for VHF TV Band

Medium Utilization for VHF TV Band

Low Utilization for VHF TV Band

Maximum

Average

High Utilization for UHF TV Band

Medium Utilization for UHF TV Band

Low Utilization for UHF TV Band

Summary: Spectrum Utilization

Summary: Spectrum Utilization

- Most of the cities show low utilization for UHF TV band (less than 20% utilization)
- High chances for deployment of dynamic spectrum access in TV band as the average usage in UHF TV band is only 6.7%
- Notes:
 - Medium Utilization (9 20%), 6 cities:
 - Alor Setar, Pasir Gudang, Labuan, Sepang, Ipoh, and Kuantan
 - Low Utilization (0 9%) 7 cities:
 - Kota Kinabalu, Kangar, Melaka, Penang, Kota Kinabalu, Kuala Terengganu and Samarahan

Outline

- Introduction

 TV White Spa
- Spectrum Measurement — VHF and UHF Band Utilization
- Downconverter Implementation
- Integration Work and TVWS Prototype
 - Power Detector
 - Lab Experimental and Results
- Moving Forward
- Conclusion

Downconverter Features & Design

- Frequency conversion from up to 3 GHz to UHF
- Support TV white-spaces from 470 to 770 MHz
- High power handling up to 20 dBm (peak)
- Battery operation, 3.7 V and 500 mA max
- Simple interface for UHF CH control
- RF receptacles are mounted for all RF interface

Downconverter Specification & Fabrication

Contents	Specification
Native frequency	up to 3 GHz
UHF	470 ~ 770 MHz
Bandwidth	< 20 MHz
Tx power	< 20 dBm (peak)
Rx gain	0 dB
Rx NF	7 dB
Vcc	3.7 V
Current	450 mA (Tx) /
consumption	350 mA (Rx)
Size	$100 imes$ 65 mm 2
Weight	24 g

Matsumura, T, & Harada, H, "Prototype of UHF Converter for TV White-space Utilization," WPMC 2012, pp. 24-27.

Outline

- Introduction
 - TV White Space
- Spectrum Measurement

 VHF and UHF Band Utilization
- Downconverter Implementation
- Integration Work and TVWS Prototype
 - Power Detector
 - Lab Experimental and Results
- Moving Forward
- Conclusion

Integration Work & TVWS Prototype

Development of Power Detector

- Integrating the WLAN Router Board with TVWS Down converter requires the knowledge of the radio transmission (transmit or receive).
- Since the WLAN Router Board and TVWS Converter are independent
 - Power detector is proposed to determine the timing sequence of radio transmission.

Power Detector

Simulation was performed using ADS circuit and layout simulation

Peak Detector Simulation result

Close enough to specification in the datasheet for HSMS-2865. We can get this closer if the Schottky is biased as prescribed.

Pin versus Vdetected – Power detector and Coupler circuit

Comparator Circuit Delay Simulation

About 5 nS delay in response = 0 to 100%

All system Simulation

PD – Schottky – Agilent :- HSMS-2865 Comparator – Texas Instrument TLV3501 Coupler – In house built

Result – Overall Simulation

Delay resulted from Schottky – 10 nS Note: measured from 0 mv to 0.1 V – Because the comparator is set at 100 mV

Delay – Overall ~16 nS

Integration Work & TVWS Prototype

TVWS Prototype Results (Spectrum Analyzer)

 Transmitter: WiFi at 2.41GHz

 Receiver: TVWS at 456.8MHz (UHF band)

TVWS Prototype Results (Throughput Test)

				200 B
			1.17 MEMORE	ALC: NO
			176 KBytes	And
			176 XBUTAN	And
		sec	176 WRITER	
31	774.0-776.0	Sec	292 28	41 SD105/380
L 51	774.0-776.0	-	160 VDures	abu Kbita/sec
1 71	774 0-776 0	and a	100 Kbyces	688 Kbits/sec
STIMI	774 0 776 0	aec	232 KBytes	950 Kbits/sec
[Soma]	11-1.0-110.0	aec	1.13 MBytes	4.75 Mbits/sec
	6.0-778.0	sec	176 KBytes	721 Kbits/sec
L 8.	0-778.0	sec	176 KBytes	721 Kbits/sec
[4]	776.0-778.0	sec	224 KBytes	918 Kbits/sec
[3]	776.0-778.0	sec	224 KBytes	918 Kbits/sec
[5]	776.0 8.0	sec	232 KBytes	950 Kbits/sec
61	776.0-778.0	sec	232 KBytes	950 Kbits/sec
(SUM)	776.0-778.0	sec	1.23 MBytes	5.18 Mbits/sec
			The second se	Reply from 192.168.2

-				
[SUM]	168.0-110.0	sec	1.13 Mbyce	1.75 ADICS/SEC
L OI	760.0 770.0	Jec	1 19 MBurn	4 75 Maita/and
1 81	769 0- 0	100	232 KBut (950 Khite/alo
1 51	768.0-770.0	sec	176 KBytes	721 Khits/sec
[6]	768.0-770.0	sec	176 KBytes	721 Kbits/sec
[3]	-770.0	sec	224 KBytes	918 Kbits/sec
1 1	0-770.0	sec	176 KBytes	721 Kbits/sec
1 71	768.0-770.0	sec	176 KBytes	721 Kbits/sec
Ladre	/00.0-/68.0	sec	1.20 MBytes	5.01 Mbits/sec
Cermus	766.0 768.0	sec	224 KBytes	918 Kbita/sec
	766 0-769 0	aec	232 KBytes	950 Kbits/sec
	766.0-769.0		202 KBytes	950 Xbits/sec
	766.0-768.0	-	and Mayres	
		-	176 70.000	SEL MES
		BRC	TA VR.	and the second s
			The Day of the Deliver.	

Lab experimental

Outline

- Introduction
 - TV White Space
- Spectrum Measurement

 VHF and UHF Band Utilization
- Downconverter Implementation
- Integration Work and TVWS Prototype
 - Power Detector
 - Lab Experimental and Results
- Moving Forward
- Conclusion

Moving Forward

- Field experiment of TVWS transmission for the rural communications / disaster management
- Objectives
 - To improve the performance of TVWS transceiver (continuation)
 - To clarify regulations for TVWS system in Malaysia
 - To formulate requirement for database setup in Malaysia

Outline

- Introduction
 - TV White Space
- Spectrum Measurement

 VHF and UHF Band Utilization
- Downconverter Implementation
- Integration Work and TVWS Prototype
 - Power Detector
 - Lab Experimental and Results
- Moving Forward
- Conclusion

Conclusion

- The availability of TVWS has been investigated by analyzing spectrum utilization in Malaysia to gain insight into current TV band spectrum usage.
- TVWS transceiver has been developed and tested.
 Power Detector was proposed to determine the transmission timing of radio.
- Future TVWS field experimental is planned for rural communications and disaster management purposes.

Thank You!