

Indoor Navigator for the Visibly Impaired: A Proposal

Dr. David Chieng

Dr. SehChun Ng

Dr. Alvin Ting

Mohd Faiz Mat Daud

Innovation for Life™

- Motivations
- Current Challenges
- Proposal
- High Level System Design
- Collaboration ideas
- Conclusion

Motivations

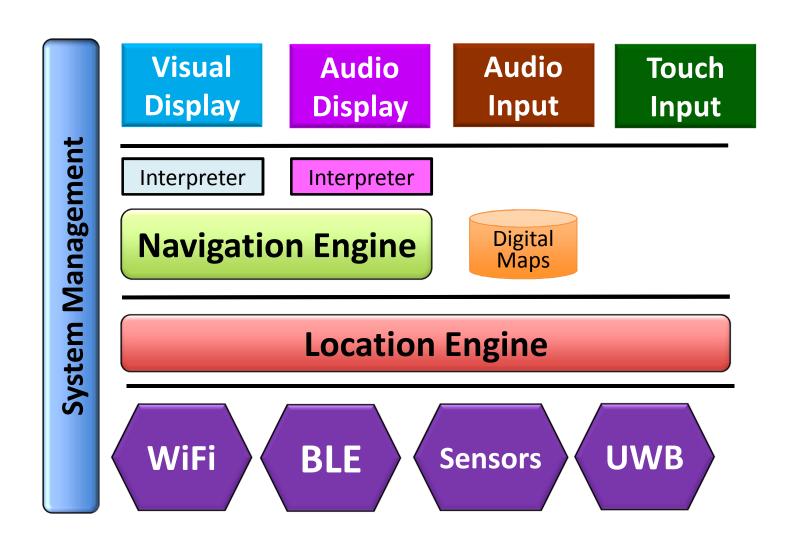
- A visibly impaired person has limited freedom to roam around public areas → only limited to familiar places.
- Smart phones are widely available and affordable
- Smart phone-based indoor positioning technologies which rely on built-in wireless interfaces and sensors are maturing
- A cost-effective application for visibly impaired
- MIMOS working on indoor positioning application for local retail market

Current Challenges

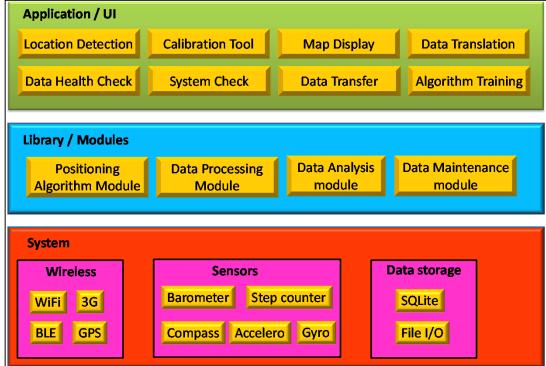
- GPS unavailable indoor
- Most commercial indoor positioning technologies requires expensive infrastructure setup
- There are still many research problems in indoor positioning especially on lower cost approaches
- Lacked of commercial motivations to support the handicaps

Proposal

 A mobile application which provides a better real-time spatial or location awareness to the visibly impaired

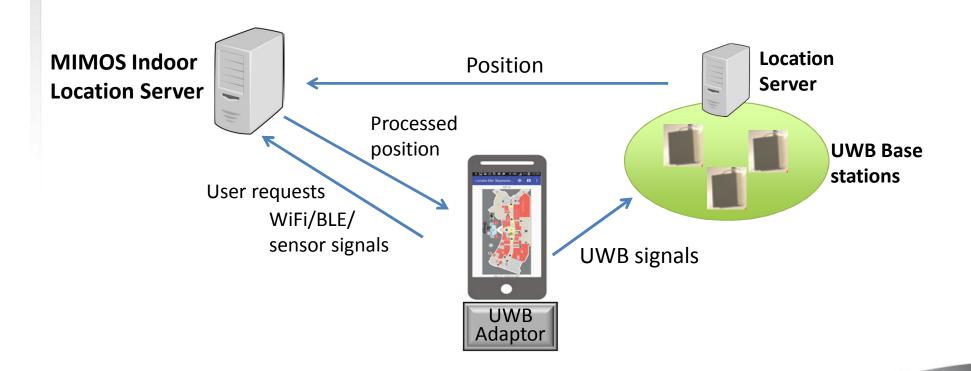

- Rely on wireless interfaces and sensors
- Example applications:
 - > Find retail items and how to get there
 - Find public amenities such as toilet, info desk, drinking water machines, rubbish bin, etc.
 - > Hazard warnings e.g. construction or cleaning in front, dangerous object on the floor, etc.
 - > Inform your buddy where you are

High Level System Design


MIMOS Indoor Positioning Platform

Applications

MIMOS Location Platform Architecture


Collaboration Ideas

- 1. Improving accuracy → sub meter
- 2. Orientation and Mobility
- 3. Joint trials and commercialization

1) Improving Accuracy

Integrate with NICT's UWB system for better accuracy. On top of WiFi, BLE & sensor-based techniques

2) Orientation and Mobility

 How to establish direction, movement and speed?

Putting them altogether

- How to manage surrounding objects/events?
 - Classification
 - Notifications

TERIMA KASIH THANK YOU

www.mimos.my

Innovation for Life™

© 2012 MIMOS Berhad. All Rights Reserved.

Asean IVO Forum, 26 Nov 2015, Kuala Lumpur

Item	Description	2016	2017	2018
Α	Background study, system design			
В	HW/SW acquisition, preparation			
С	System development		<u>.</u>	
D	System integration (with NICT)			
E	Pilot Site Acquisition/deployment			
F	Analysis/pilot trials			
G	Demo/Press/Project closure	$\stackrel{\wedge}{\longrightarrow}$	$\stackrel{\wedge}{\longrightarrow}$	\rightarrow

Research Budget

- MIMOS Researchers = 2 or 3 FTE
- NICT Researchers =
- Travel expenses =
- Training =
- Consumables =